Astra DB
DataStax Astra DB is a serverless vector-capable database built on
Apache Cassandra®
and made conveniently available through an easy-to-use JSON API.
See a tutorial provided by DataStax.
Installation and Setup
Install the following Python package:
pip install "langchain-astradb>=0.1.0"
Get the connection secrets. Set up the following environment variables:
ASTRA_DB_APPLICATION_TOKEN="TOKEN"
ASTRA_DB_API_ENDPOINT="API_ENDPOINT"
Vector Store
from langchain_astradb import AstraDBVectorStore
vector_store = AstraDBVectorStore(
embedding=my_embedding,
collection_name="my_store",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
API Reference:AstraDBVectorStore
Learn more in the example notebook.
See the example provided by DataStax.
Chat message history
from langchain_astradb import AstraDBChatMessageHistory
message_history = AstraDBChatMessageHistory(
session_id="test-session",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
API Reference:AstraDBChatMessageHistory
See the usage example.
LLM Cache
from langchain.globals import set_llm_cache
from langchain_astradb import AstraDBCache
set_llm_cache(AstraDBCache(
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
))
API Reference:set_llm_cache | AstraDBCache
Learn more in the example notebook (scroll to the Astra DB section).
Semantic LLM Cache
from langchain.globals import set_llm_cache
from langchain_astradb import AstraDBSemanticCache
set_llm_cache(AstraDBSemanticCache(
embedding=my_embedding,
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
))
API Reference:set_llm_cache | AstraDBSemanticCache
Learn more in the example notebook (scroll to the appropriate section).
Learn more in the example notebook.
Document loader
from langchain_astradb import AstraDBLoader
loader = AstraDBLoader(
collection_name="my_collection",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
API Reference:AstraDBLoader
Learn more in the example notebook.
Self-querying retriever
from langchain_astradb import AstraDBVectorStore
from langchain.retrievers.self_query.base import SelfQueryRetriever
vector_store = AstraDBVectorStore(
embedding=my_embedding,
collection_name="my_store",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
retriever = SelfQueryRetriever.from_llm(
my_llm,
vector_store,
document_content_description,
metadata_field_info
)
API Reference:AstraDBVectorStore | SelfQueryRetriever
Learn more in the example notebook.
Store
from langchain_astradb import AstraDBStore
store = AstraDBStore(
collection_name="my_kv_store",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
API Reference:AstraDBStore
See the API Reference for the AstraDBStore.
Byte Store
from langchain_astradb import AstraDBByteStore
store = AstraDBByteStore(
collection_name="my_kv_store",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
API Reference:AstraDBByteStore
See the API reference for the AstraDBByteStore.