How to use prompting alone (no tool calling) to do extraction
Tool calling features are not required for generating structured output from LLMs. LLMs that are able to follow prompt instructions well can be tasked with outputting information in a given format.
This approach relies on designing good prompts and then parsing the output of the LLMs to make them extract information well.
To extract data without tool-calling features:
- Instruct the LLM to generate text following an expected format (e.g., JSON with a certain schema);
- Use output parsers to structure the model response into a desired Python object.
First we select a LLM:
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o-mini")
This tutorial is meant to be simple, but generally should really include reference examples to squeeze out performance!
Using PydanticOutputParserβ
The following example uses the built-in PydanticOutputParser
to parse the output of a chat model.
from typing import List, Optional
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field, validator
class Person(BaseModel):
"""Information about a person."""
name: str = Field(..., description="The name of the person")
height_in_meters: float = Field(
..., description="The height of the person expressed in meters."
)
class People(BaseModel):
"""Identifying information about all people in a text."""
people: List[Person]
# Set up a parser
parser = PydanticOutputParser(pydantic_object=People)
# Prompt
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Answer the user query. Wrap the output in `json` tags\n{format_instructions}",
),
("human", "{query}"),
]
).partial(format_instructions=parser.get_format_instructions())
Let's take a look at what information is sent to the model
query = "Anna is 23 years old and she is 6 feet tall"
print(prompt.format_prompt(query=query).to_string())
System: Answer the user query. Wrap the output in `json` tags
The output should be formatted as a JSON instance that conforms to the JSON schema below.
As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.
Here is the output schema:
\`\`\`
{"$defs": {"Person": {"description": "Information about a person.", "properties": {"name": {"description": "The name of the person", "title": "Name", "type": "string"}, "height_in_meters": {"description": "The height of the person expressed in meters.", "title": "Height In Meters", "type": "number"}}, "required": ["name", "height_in_meters"], "title": "Person", "type": "object"}}, "description": "Identifying information about all people in a text.", "properties": {"people": {"items": {"$ref": "#/$defs/Person"}, "title": "People", "type": "array"}}, "required": ["people"]}
\`\`\`
Human: Anna is 23 years old and she is 6 feet tall
Having defined our prompt, we simply chain together the prompt, model and output parser:
chain = prompt | model | parser
chain.invoke({"query": query})
People(people=[Person(name='Anna', height_in_meters=1.83)])
Check out the associated Langsmith trace.
Note that the schema shows up in two places:
- In the prompt, via
parser.get_format_instructions()
; - In the chain, to receive the formatted output and structure it into a Python object (in this case, the Pydantic object
People
).
Custom Parsingβ
If desired, it's easy to create a custom prompt and parser with LangChain
and LCEL
.
To create a custom parser, define a function to parse the output from the model (typically an AIMessage) into an object of your choice.
See below for a simple implementation of a JSON parser.
import json
import re
from typing import List, Optional
from langchain_anthropic.chat_models import ChatAnthropic
from langchain_core.messages import AIMessage
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field, validator
class Person(BaseModel):
"""Information about a person."""
name: str = Field(..., description="The name of the person")
height_in_meters: float = Field(
..., description="The height of the person expressed in meters."
)
class People(BaseModel):
"""Identifying information about all people in a text."""
people: List[Person]
# Prompt
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Answer the user query. Output your answer as JSON that "
"matches the given schema: \`\`\`json\n{schema}\n\`\`\`. "
"Make sure to wrap the answer in \`\`\`json and \`\`\` tags",
),
("human", "{query}"),
]
).partial(schema=People.schema())
# Custom parser
def extract_json(message: AIMessage) -> List[dict]:
"""Extracts JSON content from a string where JSON is embedded between \`\`\`json and \`\`\` tags.
Parameters:
text (str): The text containing the JSON content.
Returns:
list: A list of extracted JSON strings.
"""
text = message.content
# Define the regular expression pattern to match JSON blocks
pattern = r"\`\`\`json(.*?)\`\`\`"
# Find all non-overlapping matches of the pattern in the string
matches = re.findall(pattern, text, re.DOTALL)
# Return the list of matched JSON strings, stripping any leading or trailing whitespace
try:
return [json.loads(match.strip()) for match in matches]
except Exception:
raise ValueError(f"Failed to parse: {message}")
query = "Anna is 23 years old and she is 6 feet tall"
print(prompt.format_prompt(query=query).to_string())
System: Answer the user query. Output your answer as JSON that matches the given schema: \`\`\`json
{'$defs': {'Person': {'description': 'Information about a person.', 'properties': {'name': {'description': 'The name of the person', 'title': 'Name', 'type': 'string'}, 'height_in_meters': {'description': 'The height of the person expressed in meters.', 'title': 'Height In Meters', 'type': 'number'}}, 'required': ['name', 'height_in_meters'], 'title': 'Person', 'type': 'object'}}, 'description': 'Identifying information about all people in a text.', 'properties': {'people': {'items': {'$ref': '#/$defs/Person'}, 'title': 'People', 'type': 'array'}}, 'required': ['people'], 'title': 'People', 'type': 'object'}
\`\`\`. Make sure to wrap the answer in \`\`\`json and \`\`\` tags
Human: Anna is 23 years old and she is 6 feet tall
chain = prompt | model | extract_json
chain.invoke({"query": query})
/Users/bagatur/langchain/.venv/lib/python3.11/site-packages/pydantic/_internal/_fields.py:201: UserWarning: Field name "schema" in "PromptInput" shadows an attribute in parent "BaseModel"
warnings.warn(
[{'people': [{'name': 'Anna', 'height_in_meters': 1.83}]}]
Other Librariesβ
If you're looking at extracting using a parsing approach, check out the Kor library. It's written by one of the LangChain
maintainers and it
helps to craft a prompt that takes examples into account, allows controlling formats (e.g., JSON or CSV) and expresses the schema in TypeScript. It seems to work pretty!